乘进去之后是裸的卷积,FFT解决,卷积题熟练度++
//By Richard #include <cstdio> #include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <cmath> #include <ctime> #define rep(x,y,z) for (int x=(y);(x)<=(z);(x)++) #define per(x,y,z) for (int x=(y);(x)>=(z);(x)--) #define log2(x) (31-__builtin_clz(x)) #define mod (int)(1e9+7) #define inf 0x3f3f3f3f #define cls(x) memset(x,0,sizeof(x)) #ifdef DEBUG #define debugdo(X) X #define debugndo(X) #define debugout(X) cout<<(#X)<<"="<<(X)<<endl #else #define debugdo(X) #define debugndo(X) X #define debugout(X) #endif // debug #ifdef ONLINE_JUDGE #define debugdo(X) #define debugndo(X) #define debugout(X) #endif #define sqr(x) ((x)*(x)) #define putarray(x,n) rep(iiii,1,n) printf("%d ",x[iiii]) #define mp make_pair using namespace std; typedef pair<int,int> pairs; typedef long long LL; /////////////////////read3.0//////////////////////////////////// template <typename T> inline void read(T &x){char ch;x=0;bool flag=false;ch=getchar();while (ch>'9'||ch<'0') {ch=getchar();if (ch=='-') flag=true;}while ((ch<='9'&&ch>='0')){x=x*10+ch-'0';ch=getchar();}if (flag) x*=-1;} template <typename T> inline void read(T &x,T &y){read(x);read(y);} /////////////////variables&functions////////////////////const int maxn=1048576;
const double pi=3.1415926535897932384626433832795028841971693993751058209749446;
int r[maxn],n,m,l,nn;
struct cp
{
double x,y;
cp(double a=0,double b=0):x(a),y(b){}
cp operator+(cp a){return cp(x+a.x,y+a.y);}
cp operator-(cp a){return cp(x-a.x,y-a.y);}
cp operator*(cp a){return cp(xa.x-ya.y,xa.y+ya.x);}
cp operator/(int a){return cp(x/a,y/a);}
}A[maxn],B[maxn],AA[maxn];
inline void swap(cp &a,cp &b){cp t=a;a=b;b=t;}
void FFT(cp *a,int n,int op)
{
rep(i,0,n-1) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=1;i<n;i<<=1)
{
cp wn(cos(pi/i),sin(pi/i)op);
for (int j=0;j<n;j+=i<<1)
{
cp w(1,0);
for (int k=0;k<i;k++,w=wwn)
{
cp x=a[j+k],y=a[i+j+k]*w;
a[j+k]=x+y;
a[i+j+k]=x-y;
}
}
}
}
int main()
{
read(n);
m=n;
nn=n;
rep(i,0,n-1) scanf("%lf",&A[i].x);
rep(i,0,n-1) AA[n-i-1].x=A[i].x;
rep(i,1,n-1) B[i].x=(double)1/(i)/(i);m+=n-2; for (l=0,n=1;n<=m;n<<=1,++l); rep(i,0,n-1) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1)); FFT(A,n,1);FFT(B,n,1); rep(i,0,n-1) A[i]=B[i]*A[i]; FFT(A,n,-1); rep(i,0,n-1) A[i].x=A[i].x/n; FFT(AA,n,1); rep(i,0,n-1) AA[i]=B[i]*AA[i]; FFT(AA,n,-1); rep(i,0,n-1) AA[i].x=AA[i].x/n; rep(i,0,nn-1) printf("%lf\n",-AA[nn-i-1].x+A[i].x); return 0;
}